
SR-PredictAO: Session-based Recommendation
with High-Capability Predictor Add-On

Ruida WANG, Raymond Chi-Wing WONG, Weile TAN
The Hong Kong University of Science and Technology

Kowloon, Hong Kong
rwangbr@connect.ust.hk, raywong@cse.ust.hk, wtanae@connect.ust.hk

Abstract—Session-based recommendation, aiming at making
the prediction of the user’s next item click based on the
information in a single session only, even in the presence of some
random user’s behavior, is a complex problem. This complex
problem requires a high-capability model of predicting the user’s
next action. Most (if not all) existing models follow the encoder-
predictor paradigm where all studies focus on how to optimize the
encoder module extensively in the paradigm, but they overlook
how to optimize the predictor module. In this paper, we discover
the critical issue of the low-capability predictor module among
existing models. Motivated by this, we propose a novel framework
called Session-based Recommendation with Predictor Add-On (SR-
PredictAO). In this framework, we propose a high-capability
predictor module which could alleviate the effect of random
user’s behavior for prediction. It is worth mentioning that this
framework could be applied to any existing models, which could
give opportunities for further optimizing the framework. Exten-
sive experiments on two real-world benchmark datasets for three
state-of-the-art models show that SR-PredictAO out-performs the
current state-of-the-art model by up to 2.9% in HR@20 and 2.3%
in MRR@20. More importantly, the improvement is consistent
across almost all the existing models on all datasets, and is
statistically significant, which could be regarded as a significant
contribution in the field.

Index Terms—session-based recommendation, recommender
system, neural decision forest, tree-based method

I. INTRODUCTION

Next-item recommender systems show their importance in
the current age of e-commerce by accurately predicting the
user’s subsequent behavior. Session-based recommendation is
one recent hot topic of the next-item recommender. It is differ-
ent from the general next-item recommendation systems, which
put great attention on a specific group of existing users with
a large number of historical behavior records to perform the
next-item prediction. The session-based recommendation, as
its name indicates, groups all the activities in the basic unit of
the session and is based only on the information within a single
session. The idea of session-based recommendation systems
comes from [1]. It shows that intra-session-dependencies have
a more significant impact than inter-session dependencies on
the user’s final decision to view the next item. In particular,
the user’s next-item behavior is usually related to behaviors
in the current session. For example, a user’s behavior in
buying phone accessories in one session has a relatively low
connection to his/her action of buying clothes two days ago but
has a strong relationship with his/her visit to a phone charger
in the same session.

Due to the highly practical value in the field of modern com-
merce, the session-based recommendation attracts researchers’
interest. In recent years, most (if not all) proposed models
followed the encoder-predictor paradigm [2]–[7], involving
2 components. The first component is the session encoder
module, and the second component is the predictor module.
The session encoder module transforms the input session
(represented in the form of a sequence of items) into an n′-
dimensional vector called the latent variable, where n′ is a
positive integer denoting a model parameter. The predictor
module generates a probability distribution over all items that
represents how likely each item is to be the next item. The
paradigm is shown in Fig. 1 (a). Different existing models
have different implementations of the encoder modules. For
example, in [8], the encoder module is a Gated GNN that
captures complex transitions of items to obtain the latent
variable, and in [9], the encoder module is a Star GNN
that uses a star node, representing the whole session, and a
Highway Network, handling the overfit problem. The predictor
modules of most (if not all) existing models are all linear
models.

Although existing models following the current encoder-
predictor paradigm perform well, there are still some issues
for further enhancement. The first issue is that most (if not all)
existing models have a low-capability predictor module, which
affects the prediction accuracy. Specifically, under the encoder-
predictor paradigm, even though there is an advanced model
in the encoder module constructing the latent variable, which
could represent the latent intent of a user’s purchase; it is the
predictor component that makes the recommendation, which
could somehow simulate the complicated decision process of
a user’s purchase. Unfortunately, most (if not all) existing
models use linear predictors, which are low-capability models,
limiting the prediction performance.

The second issue is that designing a high-capability model
is challenging by considering the overfit problem [10]. Specif-
ically, one straightforward solution for the first issue is to
design a high-capability model. It is well-known that an ex-
tremely high-capability model suffers from the overfit problem.
How to design an appropriate high-capability model is needed
for detailed investigation.

The third issue is that there is random user’s behavior in the
input session, which may affect the prediction performance. It
includes multi-intention problems where the user is distracted



Fig. 1: (a) The overview of the base model, (b) Framework SR-PredictAO; Given an input session S, the encoder module
generates the latent variable z. In (a), z is passed to the base model predictor module to obtain the predicted probability
distribution over all items. In (b), z is passed to both the base model predictor module and the new predictor module (called
NDF-SR) to obtain two predicted probability distributions over all items. Then, module Merger combines the two distributions
to output the final distribution.

from her/his original intention of the current session. But, more
generally, it can represent any random behavior of user, which
could create a challenge for prediction in existing models.
Previous studies [3], [9] have tried to solve that in the GNN
encoder but not completely.

In this paper, we propose a novel framework called
Session-based Recommendation with Predictor Add-On (SR-
PredictAO). Under SR-PredictAO, given an existing model
called base model in this paper, we keep all existing modules
of this base model but we augment the base model with two
additional modules. The first additional module is the high-
capability predictor module, which takes the latent variable as
input and outputs the predicted probability distribution over
all items being the next item in the session. Maintaining the
original (low-capability) predictor module, with our new high-
capability predictor module, we can capture different sides
of user’s decision process. The second additional module is
module Merger, which takes the probability distributions over
all items predicted by both the original predictor module and
the new predictor module and outputs the final probability
distribution over all items. This framework provides a lot
of opportunities to researchers for optimization on how to
specify these 2 modules, which is quite promising. The SR-
PredictAO framework could be found in Fig. 1 (b) where
the first augmented module is named as NDF-SR (which
will be described next). It is worth mentioning that our
framework SR-PredictAO could be applied to all existing
models following the encoder-predictor paradigm (with the
two additional modules), which could further improve the
prediction performance of all existing models. Due to the
nature limitation that tree-based methods hardly models linear
decision boundaries, we combine the tree-based model with
the linear model to complement each other.

In this paper, we propose a model called Neural Decision
Forest for Session-based Recommendation (NDF-SR) for the
first high-capability predictor module. Specifically, NDF-SR
involves two components. The first component is called the
random user’s behavior alleviator, which could minimize the

effect of random user’s behaviors for the prediction process
(addressing the third issue). The second component is called
the Neural Decision Forest (NDF) model, which is a high-
capability model (addressing the first issue). It could be
regarded as a forest involving a number of decision trees each
constructed with the use of neural network models. We also
propose a pruning method in the NDF model to avoid the
overfit problem (addressing the second issue). Furthermore, in
this paper, for the second Merger module, we adopt a simple
linear combination which combines the predicted distributions
from the original predictor and the new predictor to obtain
the final predicted probability distribution. In the following,
for clarify, when we describe SR-PredictAO, we mean the
framework adopting the above modules.

In summary, our contributions are shown as follows.
1) To the best of our knowledge, we are the first to find the

important low-capability issue in the predictor module
of most (if not all) existing models, lowering down their
prediction accuracy.

2) To address this important issue, we propose a frame-
work called SR-PredictAO including the high-capability
predictor module where this module involves two com-
ponents, namely the random user’s behavior alleviator
(addressing the random user’s behavior issue) and the
Neural Decision Forest (NDF) model (addressing the
low-capability predictor issue). Moreover, we propose
some pruning methods in the NDF model to address the
overfit problem.

3) We conduct extensive experiments on two public bench-
mark datasets, namely Yoochoose and Diginetica, for
three state-of-the-art models. Experimental results show
that SR-PredictAO improves almost all state-of-the-art
models on all datasets up to 2.9% on HR@20 (one
accuracy measurement) and up to 2.1% on MRR@20
(another accuracy measurement), which could set a new
state-of-the-art in the literature. This improvement is
consistent on all datasets. By considering the consis-
tency of improvement and the ease of applicability



of our framework, we regard our contribution as a
major improvement to the field of the session-based
recommendation system.

II. RELATED WORK

In this section, we introduce the related work about session-
based recommendation (Section II-A) and neural decision
forest (Section II-B).

A. Session-based recommendation

We categories existing studies about session-based recom-
mendation into three categories: (1) conventional recommen-
dation methods, (2) neural-network-based methods and (3)
graph neural-network-based methods.

Due to the similarity between the session-based recom-
mendation (SR) problem and the traditional recommendation
problem, conventional methods like Collaborative Filtering
(CF) approaches [11], [12], nearest-neighbor approaches [13],
[14] and Markov’s chain approaches [15] are applied to the
SR problem. However, due to the limited information in the
session, they all performed poorly in the SR problem.

With the improvement of computation power and knowl-
edge in Neural Network (NN), many NN-based models, in-
cluding RNN approaches [16], the transformer-based approach
[17] and the CNN-based approach [18], [19], have been
proposed. However, most of them do not perform well due to
the traditional NN’s encoding methods does not fit the session
data well.

In recent years, graph neural networks (GNNs) have be-
come popular and have been shown to have state-of-the-
art performance in many domains. Many recommendation
systems [3], [4], [8], [9] also utilize GNNs due to its ability
of modeling complex relationships among objects. In [8],
Wu et al. apply gated graph neural networks (GGNNs) to
capture the complex transitions of items, which result in
accurate session representations. In [3], to solve information
loss problems in GNN-based approaches for session-based
recommendation, Chen et al. proposed a lossless encoding
scheme, involving a dedicatedly designed aggregation layer
and a shortcut graph attention layer. In [9], Pan et al. proposed
Star Graph Neural Networks with Highway Networks (SGNN-
HN) for session-based recommendation. In particular, the
highway networks (HN) can select embeddings from item
representations adaptively to order to prevent from overfitting.
However, all aforementioned studies [3], [4], [8], [9] use the
(low-capability) linear model as the predictor (described in
Section I).

B. Tree-based method

The traditional tree-based method was proposed by Breiman
in [20], [21]. Its outstanding performance in simulating the
human decision process is studied by Quinlan et al. in [22]
The high capability of the tree-based methods was shown by
Mentch et al. [23]. With the rapid development of computation
power and neural networks, a lot of effort has been made to
combine classical tree-based methods with neural networks.

In [24], Richmond et al. introduced Convolutional Neural
Networks (CNNs) as representation learners on a traditional
random forest. Jancsary et al. in [25] introduced regression
tree fields for image restoration. To solve the problem that the
traditional tree-based method cannot do backward propagation
with other NN-based parts in the model, in [26], Kontschieder
et al. constructed uniform and end-to-end differentiable Deep
Neural Decision Forest and applied it to some computer vision
models. To the best of our knowledge, no existing studies
about session-based recommendation system utilizes the the
tree-based models incorporated with the backward propagation
with the NN-based parts in the models. We are the first one
to propose this in the field of session-based recommendation
system.

III. PRELIMINARIES

In this section, we introduce (1) problem definition (Sec-
tion III-A), (2) some preliminary knowledge about a base
model, an existing model, following the encoder-predictor
paradigm (Section III-B) and (3) the traditional version of the
tree-based method (Section III-C).

A. Problem Definition

The session-based recommendation is a sub-field of the
next-item recommendation only with the input from a specific
session. Its goal is to predict the next item that a user
will browse based on the current active session involving
all previus items browsed. We denote I = {v1, v2, · · · , vN}
by the universal set of items in the whole dataset, where
N is the total number of items. A session, denoted by
si = [si,1, si,2, · · · , si,li ], is a time-ordered sequence of items,
where i is a temporary index of the session, li denotes the
length of si and, for each t ∈ [1, li], si,t ∈ I is the item
at time step t in the session. The goal of the session-based
recommendation is to predict what the next item si,li+1 is.
A typical session-based recommendation system generates a
probability distribution over all items predicted being the next
item, i.e., P(si,li+1|si).

Additionally, we formally define the random-user behavior
and low-capability problem that SR-PredAO tries to solve as:
(1) Low-capability of the predictor can be defined as low
Degrees-of-Freedom (DoF) problems in the predictor because
DoF usually means the max ability of the model [23]. (2)
Random-user behavior is the mean-square difference between
the real value of model encoded result and its true value [27],
the rigorous definition is in SectionIV-A. This can generally be
caused by multiple comprehensive reasons including multiple
intent, distractions, etc.

B. Base Model

The base model (following the encoder-predictor paradigm)
is formulated as follows.

z = fencode(s|Θencoder) (1)
ybase = gpredict(z|Θpredictor) (2)



where (1) s is the input session (represented in the form of a
sequence of items), (2) z is the latent variable generated by the
encoder module of the model, (3) ybase denotes the probability
distribution over all items predicted being the next item, (4)
fencode is the encoder which takes the input session as input
and outputs a latent variable (a vector in Rn′

) (5) gpredict is the
predictor module which takes the latent variable as input and
outputs the probability distribution, and (6) Θencode (Θpredict) is
the parameter configuration of the encoder (predictor) module.

As described in Section I, different existing models have
different implementations of the encoder modules. In the
following, we describe the encoder module and the predictor
module of a base model of some state-of-the-art models.

1) Encoder Module: This section focuses on the most
popular base model’s session encoding method, the GNNs
encoder. But our methods can work on all kinds of session
encoders as long as it generates a latent variable. GNNs are
Neural Networks (NN) that directly operate on the graph of
data, given a graph G = (V,E), where each node vi ∈ V
represents an item in s (the session). Typically, vi is associated
with a node feature vector xi, which is the input to the first
layer of GNNs. xi ∈ Rn is obtained by multiplying the
embedding matrix (we define embedding matrix as A ∈ RN×n

with the item ID), where n is the embedding dimensionality.
And A is a trainable matrix. Assume we totally have L layers
of GNN. The formula of l-th (l ⩽ L) layer of GNN can be
represented as follows:

x
(l+1)
i = f (l)(x

(l)
i ,a

(l)
i ) (3)

a
(l)
i = agg(l)({msg(l)(x

(l)
i ,x

(l)
j )|(j, i) ∈ Ein(i)}) (4)

where x
(l)
i is the embedding vector of node i in the l-th layer

of the GNN, and Ein(i) is the set of incoming edges for node
vi ∈ V . The message processing function at the l-th layer f (l)

generates the updated embedding of the target node based on
its neighborhood. agg(l) is the aggregate function that connects
the information of different edges together, and msg(l) is
the message-extracting function that obtains information from
the edge between (x

(l)
i , x

(l)
j ). Let L be the total number of

layers in the GNN. After L steps of message passing, the
final representation for the latent variable is:

hG = fout({x(L)
i |vi ∈ V }) (5)

hG is the graph-level representation that we regard as the
graph latent variable generated by the readout function fout.

After the graph level latent variable hG is obtained, most
models adds some additional information to obtain a better
result. For example, [3] adds all results of the Embedding
layer, EOPA Layer, and SGAT Layer’s (two special kinds of
GNN mentioned in [3]) information to the graph represen-
tation, and [9] formulates the final result by concatenating
zg and zr, which are the last item’s representation and the
combination of all the graphs’ result representation come from
different levels respectively. After considering all the required
information of the base model, we define this vector as the
latent variable z ∈ Rn′

, where n′ is the dimensionality of the

latent variable. This approach is used in almost all well-known
session-recommendation models [3], [4], [8], [9] .

2) Predictor Module: After the encoder module outputs the
latent variable, the predictor module takes this as input and
performs the following steps.

1) The first step is to perform a prediction function (nor-
mally a linear model), which takes the latent variable
as input and outputs an embedding called the session
embedding sh ∈ Rn where n is the dimensionality of the
session embedding, same as the embedding dimension
of A

sh = Linear(z) (6)

2) The second step is to obtain the score vector c ∈ RN

over all items predicted being the next item.

c = [c1, c2, · · · , cN ]T = Ash (7)

where ci ∈ R is a score of item vi predicted being the
next item for each i ∈ [1, N ] and A ∈ RN×n is the item
embedding matrix we used before.

3) The third step is to obtain the probability vector ŷbase ∈
RN over all items predicted being the next item by using
the softmax function based on the score vector c.

ŷbase = softmax(c) =
exp(c)∑

i∈[1,N ] exp(ci)
(8)

C. Tree-based method
From the mathematical point of view, the tree-based method

is a way of generating a locally constant function, represented
by function tree : Rn′ → RN that divides the input space Rn′

into many regions, and give each subspace a constant value in
RN . And we can define the tree recursively by first defining
the tree-split function φ:

φ(x) = χ(x ∈ S)cl + χ(x /∈ S)cr (9)

where S ⊆ Rn′
is a subregion of the input space, and

χ(x ∈ S) is judging function that returns 1 when x ∈ S, and 0
otherwise. The cl, cr are defined as the left and right nodes of
the tree-split. If cl or cr have its value in RN , where N is the
dimension of the predicted result, then we say it is a leaf node;
if not, it is an internal node that is associated with another
tree split φl/r. And the tree function can be represented as
tree(x) = φroot(x) where φroot is the tree-split function
associated with the root node, the beginning node of the tree.
The max number of tree-split need to have from the root to
the leaf node is defined as depth.

For example, in Fig. 2, each node di(i ∈ [1, 7]) is associated
with a tree split function φi with corresponding region Si. The
node of d1 is the root node (i,e., tree = φ1), the nodes of di ̸=1

are internal nodes. And node of πj(j ∈ [1, 8]) is leaf node that
have its value πj ∈ RN .

IV. FRAMEWORK SR-PREDICTAO
Framework SR-PredictAO involves two modules, namely

the high-capability predictor module (Section IV-A) and the
Merger module (Section IV-B). The training process of SR-
PredictAO is presented in Section IV-C.



A. High-Capability Predictor Module

We propose a model called Neural Decision Forest for
Session-based Recommendation (NDF-SR) for the high-
capability predictor module. Specifically, NDF-SR involves
two components. The first component is called the random
user’s behavior alleviator (Section IV-A1) and the second
component is called the Neural Decision Forest (NDF) model
(Section IV-A2). As described in Section I, we also propose a
pruning method in the NDF model to avoid the overfit prob-
lem. This pruning method could be found in the description
for the second component.

1) Random User’s Behavior Alleviator: The base-model
encoded latent variable for the previous session view of items
is normally heavily affected by random user’s behavior. To
solve this problem, we could take the Empirical Bayes’ point
of view [27]. For Empirical Bayes’, the observed data is not the
underlying true value but a sample under a certain distribution
around the truth. We would design our Alleviator under this
cognition.

Formally, if a batch Z ∈ Rm×n′
of m latent variables each

with dimensionality of n′ we observe from the base model’s
encoder is:

Z =


zT
1

zT
2
...

zT
m

 =


ξ1
ξ2
...

ξn′


T

=


z11 z12 · · · z1n′

z21 z22 · · · z2n′

...
...

. . .
...

zm1 zm2 · · · zmn′


We denote zj to be the j-th row of Z and also the latent
variable of the j-th session in the batch for each j ∈ [1,m].
We denote ξi to be the i-th column of Z for each i ∈ [1, n′].

Z is not the underlying truth value for the latent variable but
a sample from a distribution with the underlying truth value
as its expected value. Suppose that µ ∈ Rm×n′

denotes the
correspondence truth values as follows.

µ =


µ11 µ12 · · · µ1n′

µ21 µ22 · · · µ2n′

...
...

. . .
...

µm1 µm2 · · · µmn′

 =


µT

1

µT
2
...

µT
m


The Empirical Bayes’ assumption is that ∀i, j; zij |µij ∼

N (µij , σ
2
j ), which is a normal distribution with mean µij and

variance σ2
j , with an additional assumption that σ2

j ⩾ 1. This
assumption also means that the variance is the same across
different columns. We aim to obtain an estimator for µ given
the observation Z. The Maximum Likelihood Estimator (MLE)
that is commonly used in the field suggests that we should
just take the Z itself. That is, for each i ∈ [1,m] and each
j = [1, n′],

µ̂
(MLE)
ij = zij (10)

But, our alleviator uses the James-Stein Estimator for
Session-based Recommendation (JSE-SR) that applies indirect
evidence from other values of the same entry in the batch. The
JSE-SR is defined as follows:

µ̂
(JS)
ij = (1− m− 2

∥ξj∥2
)zij (11)

For each of the two estimators µ̂ij (i.e.,µ̂(MLE)
ij and µ̂

(JS)
ij ),

the effect of random user’s behavior on the latent variable can
be quantified as follows. For each j ∈ [1, n′], E[

∑m
i=1(µij −

µ̂ij)
2].

We can show the following lemma. In this lemma, we know
that the estimator µ̂

(JS)
ij gives a smaller error compared with

the estimator µ̂(MLE)
ij .

Lemma 4.1:

E[
m∑
i=1

(µij − µ̂
(JS)
ij )2] ⩽ E[

m∑
i=1

(µij − µ̂
(MLE)
ij )2] (12)

Proof Sketch: Firstly, for all predictor µ̂ij := µ̂ij(zij)
of µij , we can decompose E[

∑m
i=1(µij − µ̂ij)

2] =∑m
i=1 E[(zij − µ̂ij)

2] + 2
∑m

i=1 E[(µ̂ij − µij)(zij − µij)].
Secondly, we perform integration by parts, we have: E[(zij −
µij)(µ̂ij − µij)] = σ2

jE[
∂µ̂ij

∂zij
]. Thirdly, we plug the µ̂

(JS)
ij

and µ̂
(MLE)
ij into the equation, we have Equation 11.

A complete proof can be found in the supplementary
material in https://github.com/RickySkywalker/SR-PredictAO-
official/blob/main/Supplementary%20Material.pdf.

Therefore, applying JSE-SR to all entries in Z, we have:

Ẑ(JS) = [µ̂
(JS)
ij ]i∈[1,m],j∈[1,n′] (13)

2) Neural Decision Forest (NDF): As described in Sec-
tion I, the Neural Decision Forest (NDF) model could be
regarded as a forest involving a number of decision trees each
constructed with the use of Neural Network (NN) models.
Each decision tree in this model is formally named as a Neural
Decision Tree (NDT).

In the following, we first define NDT and then NDF.

NDT: Our proposed NDT method is the part that provides
(more than) enough capability to solve the lack of capability
problem of the linear predictor. Considering the representation
learning in the session-based recommendation, our proposed
NDT differs from the traditional trees that greedily find the
split that may reduce the loss function in the given variable
space and entries proposed by [20], which requires a fixed
encoder, but our proposed NDT uses NN to do the split and are
optimized by backward propagation together with the encoder.
In our case, this encoder is normally a GNN-based encoder.
The NDT that has depth d, and it takes values from alleviator-
processed latent variable z(JS) ∈ Rn′

as input. It consists of
the following.

• A decision function (normally a deep neural network):
f : Rn′ → R2d−1 (because a tree with depth d requires
2d − 1 number of the split, resulting in 2d leaf nodes)

• A probability score matrix π ∈ R2d×N (which is train-
able) for all leaf nodes:

π = [πij ] = [π1, · · · ,π2d ]
T (14)

https://github.com/RickySkywalker/SR-PredictAO-official/blob/main/Supplementary%20Material.pdf
https://github.com/RickySkywalker/SR-PredictAO-official/blob/main/Supplementary%20Material.pdf


We mark the leaf nodes of a tree from left to right with
index 1, 2, · · · , 2d, where the i-th leaf node means the
leaf node with index i. Note that under our definition, the
NDT is always a balanced tree. πij means the probability
score of the j-th item in the i-th leaf node. πi means a
vector containing the probability scores of all items in I
of the i-th leaf node.

Fig. 2: The overview of the NDT, decision function gives the
split score for root and internal nodes, and the leaves nodes’
result is the probability of the session reaching the node

The NDT works as follows. The decision function generates
a decision score for each split. Then, applying a sigmoid
function to the decision score to obtain the right and left
decision probability. A binary split is associated with the
probability of arriving at the root of this split as proot, which
is generated by previous splits. Let s = σ(f(z(JS))). The split
here means the process of giving an item in the root of the
subtree what is the probability that this item goes to the right
and left of the root. The probability is calculated as follows.{

pleft = proot · s
pright = proot · (1− s)

(15)

For example, in Fig. 2, proot for node d1 is 1, and proot for
node d2 is set to pleft computed within node d1.

We recursively apply this split method from the tree’s root
to the leaf nodes. We obtain the leaf-reaching probability
pleaf = [p

(leaf)
1 , p

(leaf)
2 , · · · , p(leaf)

2d
]T ∈ R2d to represent

what is the probability that this session may fall into each
leaf node. Then, multiply softmax(π) matrix by pleaf to
obtain the probability distribution p̂ ∈ RN over all items that
this session may represent.

p̂ = pT
leafsoftmax(π) =

2d∑
k=1

p
(leaf)
k softmax(πk) (16)

where p̂ is the predicted probability for each item for this tree.
To make π normalized, we apply the softmax function before
we use it.

Pruning: Because that all tree-based methods, including NDT,
suffer from serious overfitting because they normally have
excessive capability. The problem is more severe in our case
since our NDT is trained simultaneously with the encoder. To
solve that problem, we propose NDT-pruning that can control
the excessive capability to control overfitting.

Traditional pruning uses the judgment of loss function to
see which leaves should drop, but for an NDT, it is hard to do
a similar thing. Thus, to prune the NDT, we apply a random
mask to the outcomes of NDT. So we do the following:

p′
leaf = softmax(RandomMask(pleaf , r)) (17)

where pleaf ∈ R2d is the leaf-reaching probability, and each
leaf node has a probability r (we call it pruning rate) to be 0,
and r ∈ [0, 1]. After the random mask, we use p′

leaf to replace
pleaf to obtain p̂, the predicted next-item distribution of this
tree.

Since NDT typically has excessive capability than needed,
which may fit into unrelated information in data, this makes
the model easy to overfit. Our proposed NDT-pruning controls
the overfitting by removing the excessive capability of the
NDT. By choosing a good pruning rate, we can control
the capability of our model in a reasonable range that can
compensate for the lack of capability in linear predictors and
not be too high to overfit. More details of the relation between
the model’s capability and NDT-pruning can be found in
Section V-C

NDF: We construct the NDF by the basic building block NDT
and NDT-pruning in this section. Breiman proved that com-
bining trees into a forest model generally makes the model’s
outcome more stable [21]. Non-neural trees that formulate
Random Forest should have a different mask of entries for
every split, but that is not possible if we use a uniform decision
function for each tree. So, we independently drop some entries
for each NDT.

For example, if an input Alleviator-processed latent variable
for the NDT is z(JS) = [z

(JS)
1 · · · , z(JS)

n′ ]T ∈ Rn′
, for the

i-th NDT after the variable mask-off, a fixed subset of z′
i =

[z1i , z2i , · · · , zγi
] where |z′

i| = γi ⩽ n′, and z′ ⊆ z(JS). For
each NDT, the list of entries to drop is randomly selected when
building the model, but this list is fixed during training. If there
are T number of NDTs in the NDF-SR, and their predicted
next-item probability is P = [p̂1, p̂2, · · · , p̂T ], where p̂i ∈
RN for all i = 1, 2, · · · , T . The NDF’s predicted result is:

ŷNDF−SR =
1

T
· (

T∑
i=1

p̂i) (18)

which is also the predicted result of the NDF-SR, our proposed
high-capability predictor.

Time complexity analysis: Under tree-parallel setting, the
NDF-SR module’s time complexity is O(m ·n′ ·k+m ·k ·N),
where k is the number of leaves in the tree (typically 32 to
64). This is only slightly higher than the O(m · n′ · N) for
traditional linear predictors.

B. Merger Module

In this paper, for the second Merger module, we adopt
a simple linear combination which combines the predicted
distributions from the original predictor and the new predictor



to obtain the final predicted probability distribution by using
a user parameter q ∈ [0, 1] as follows.

ŷ = q · ŷbase + (1− q) · ŷNDF−SR (19)

Here, ŷ ∈ RN is the probability distribution over all items
predicted being the next item (which is the combined result
from the original predictor module and the new predictor
module). ŷ is the output of framework SR-PredAO.

C. Training

Note that ŷ obtained in module Merger is the output of
framework SR-PredAO. Let y be the real probability distri-
bution over all items being the next item, which is a one-hot
vector. The loss function of framework SR-PredAO L(·, ·) is
the same as the one used in the base model, which is the
cross-entropy loss.

L(y, ŷ) = −yT log(ŷ) (20)

For initialization, all trainable parameters in both the base
model and the additional modules in framework SR-PredAO
are initialized randomly, and they are jointly updated in an
end-to-end back propagation manner.

V. EXPERIMENT

We give the experiment setup in Section V-A and the results
in Section V-B. Implementation of this paper can be found in
https://github.com/RickySkywalker/SR-PredictAO-official

A. Experimental Setup

1) Datasets: We evaluated the performance of state-of-the-
art models and our proposed framework on the following two
benchmark real-world datasets:

• Yoochoose1 is a dataset obtained from the RecSys Chal-
lange 2015, which contains user sessions of click events
from an online retailer.

• Diginetica2 is a dataset released by the CIKM Cup 2016,
which includes user sessions extracted from e-commerce
search engine logs.

Our dataset preprocess directly following [3], [9], [17]. The
statistics of the datasets after pre-processing are provided in
Table I.

Statistic Yoochoose 1/64 Diginetica

# of Clicks 565,332 982,961

# of Training Sessions 375,625 647,523

# of Test Sessions 55,896 71,947

# of Items 17,792 43,097

Average length 6.14 5.12

TABLE I: Statistics of datasets

1http://2015.recsyschallenge.com/challenge.html
2http://cikm2016.cs.iupui.edu/cikm-cup

2) Evaluation Metrics: Following previous studies [2]–[4],
[8], [9], [28]–[30], we adopt the commonly used HR@20
(Hit Rate)3 and MRR@20 (Mean Reciprocal Rank) as our
evaluation metrics.

3) Base Model & Baselines: Framework SR-PredAO in-
volves a base model (together with our proposed high-
capability predictor module and the Merger module). In our
experiments, we choose the following three base models,
namely LESSR [3], SGNN-HN [9] and DIDN [4], since they
are representative in the literature. Roughly speaking, LESSR
has a clear encoder-predictor paradigm for the ease of illustra-
tion and conducting subsequent experiments. SGNN-HN and
DIDN have the best performance on datasets Yoochoose 1/64
and Diginetica, respectively.

We also considered using some newer proposed models
like [5]–[7] as base models, but their performance is less
satisfactory in our benchmarks and thus not demonstrated in
the paper. In the following, when we describe framework SR-
PredAO using the base model M , we write SR-PredAO(M).

To more effectively illustrate the superiority of our frame-
work’s capability in enhancing models. In addition to three
base models without enhancement as baselines, we have also
included other baselines in the comparison. These encompass
traditional recommendation methods such as Item-KNN [31],
the GRU-based method GRU4REC [16], two transformer-like
methods, STAMP [32] and SR-IEM [33], and a basic GNN-
based method, SR-GNN [8].

4) Implementation Details: In the SR-PredAO framework,
hyper-parameters (e.g., batch size and learning rate) for the
base models are kept as the best experimental configurations
reported in their papers [3], [4], [9]. This allows us to observe
the improvements made by the SR-PredAO framework, which
includes the new predictor module and the merger module,
over the base models. The additional hyper-parameters are
determined through binary search. Additionally, every reported
result is the best outcome for both the baselines and the SR-
PredAO-enhanced models, and these configurations may vary.
We also use the accuracy of the training data as the validation
set for model selection. The training averagely costs 3 RTX-
4090 GPU days.

B. Experimental Results

1) Performance Comparison: Table II shows the experi-
mental results for all models, we can see that SR-PredAO
has a relatively significant improvement on HR@20 for all
models and on MRR@20 for almost all models. Specifically,
framework SR-PredAO, when applied to existing state-of-the-
art models,could have up to 2.9% improvement on HR@20
and 2.3% of improvement on MRR@20. Furthermore, to test
the significance of our SR-PredAO, we conducted the two-
proportion z-tests and reported p-value of such test in the
table. We can spot that when the base model has a good

3Note that [2]–[4], [8], [9], [28]–[30] used different metric names for
HR@20 (e,g, P@20 and Recall@20). But, they used the same formula to
obtain this measurement (i.e., the proportion of cases when the target item is
in the top-20 items in all test cases).



Fig. 3: The hyper-parameter study results of SR-PredAO(SGNN-HN)

Fig. 4: DoF of NDF-SR with different depth and pruning rates (r), dotted lines represent DoF of linear model

Method Diginetica Yoochoose 1/64
HR@20 MRR@20 HR@20 MRR@20

Item-KNN 35.75 11.57 51.60 21.81
GRU4REC 29.45 8.33 60.64 22.89

STAMP 45.64 14.32 68.74 29.67
SR-IEM 52.35 17.64 71.15 31.71
SR-GNN 50.73 17.59 70.57 30.94

LESSR 51.71 18.15 70.94 31.16
SR-PredAO(LESSR) 53.10 18.38 71.73 31.70

Improvement (%) 2.7 1.3 1.1 1.7
p-value < 10−5 - 1.8× 10−3 -

SGNN-HN 55.67 19.12 72.06 32.61
SR-PredAO(SGNN-HN) 55.91 19.06 72.62 32.47

Improvement (%) 0.4 -0.3 0.8 -0.4
p-value 0.179 - 1.8× 10−2 -

DIDN 56.22 20.03 68.95 31.27
SR-PredAO(DIDN) 57.86 20.49 69.50 31.44
Improvement (%) 2.9 2.3 0.8 0.5

p-value < 10−5 - 2.3× 10−2 -

TABLE II: Experimental result (%) on three enhanced models
and baselines on two datasets

encoder-predictor split (i.e., DIDN and LESSR). The SR-
PredAO enhancement statistically significantly outperforms
the base models. According to Paper-with-code, SR-PredAO
achieves state-of-the-art on all experimented benchmarks on
HR@20 and almost all on MRR@20.

It is worth mentioning that using framework SR-PredAO on
any existing model could automatically improve the prediction
accuracy, which is a great advantage. Compared with recent
papers [2]–[7], [9] showing that 1.4% of improvement is
considered as a major contribution, framework SR-PredAO has
a significant improvement in the field.

2) Ablation Studies: This section presents the ablation
studies results for two important components in SR-PredAO,
namely Random User Behavior Alliviator and NDT-pruning

Dataset type LESSR SGNNHN DIDN

Diginetica
full model 53.15 55.91 57.86

w/o Alleviator 52.99 55.79 57.33
w/o Pruning 53.06 55.78 57.26

YC 1/64
full model 71.73 72.62 69.50

w/o Alleviator 71.67 72.58 69.26
w/o Pruning 71.66 72.58 69.20

TABLE III: Ablation test results (%) on random user’s behav-
ior alleviator (Alleviator) and NDT-pruning (Pruning)

Table III shows that if we drop the random user’s behav-
ior alleviator or NDT-Pruning in framework SR-PredAO, the
improvement of SR-PredAO over the base model drops to a
great extent in the Diginetica dataset but not that much in
YooChoose (YC) 1/64 dataset. This is because the YC dataset
is simpler compared with Diginetica. And in YC, the random
user behavior and the overfitting problem are not that obvious
to a certain extent.

3) Hyper-parameter Study: In this section, we study how
the number of trees, the depth of the tree, and the pruning
rate affect the performance of SR-PredAO. All the results are
shown in Fig. 3. When the number of trees reaches 128,
HR@20 of SR-PredAO is the highest. When the number of
trees is larger 128, HR@20 decreases because more trees
affects the model’s learning capacity. For the pruning rate, as
long as we do not remove the pruning feature, we can see that
varying the rate does not affect the performance too much. For

https://paperswithcode.com/


the depth of the tree, we can see that if the tree goes too deep
(i.e., the depth is greater than 5), it may have a serious overfit
problem due to the excessive capability, and if the tree is too
shallow (i.e., the depth is smaller than 5), it cannot provide
enough capability enhancement for prediction.

4) Model Size Comparison: In order to perform a fair
comparison between the base model (without using our frame-
work) and our framework, we conduct experiments so that
they have the same model complexities. Specifically, after we
obtain SR-PredAO(SGNN-HN), we enlarge the base model
(i.e., SGNN-HN) by increasing the embedding dimensionality
and this base model (without using our framework), after
parameter-tuning, is regarded as a baseline. The experimental
result on Diginetica is shown in Table IV. The enlarged base
model cannot outperform SR-PredAO(SGNN-HN) due to the
inappropriate training capacity increment of the base model.

Model Size HR@20 MRR@20

Enlarged SGNN-HN 1605MB 55.24 18.64

SR-PredAO(SGNN-HN) 1118MB 55.91 18.78

TABLE IV: Size comparison (%) result on Diginetica

C. Degrees-of-Freedom Study

This section gives a comprehensive and quantitative study of
the capability of the NDF-SR module to show the wide band-
width of capability our model can provide. As stated in Section
III-A, we use Degrees-of-Freedom (DoF) to formally define the
capability of a model in this paper. Following [23], the DoF
is a good illustration of model’s capability. It is defined as
follows: Assuming we have a dataset Dn = {(xi, yi)}Mi=1,
where xi ∈ Rn′

and εi
i.i.d.∼ N (0, σ2). The relationship

between x and y is in the form yi = f(xi)+εi, where f is the
true relation between x and y. The model we fit to estimate f
is denoted as f̂ , in our case, and prediction is ŷi = f̂(xi), it
can be either the base model or SR-PredAO enhanced model.
Then, the DoF is defined as DoF (f̂) = 1

σ2

∑N
i=1 Cov(ŷi, yi).

()SMince in the session-based recommendation problem, we
do not know the true function f , we perform DoF analysis on
two simulated underlying functions, namely the ”MARSadd”
[23]: yi = 0.1e4xi1 + 4

e−20(xi2−0.5) + 3xi3 + 2xi4 + xi5 + εi,

where ϵ
i.i.d.∼ N (0, 1) and xi = [xi1, · · · , xi5]

⊤ are ran-
domly sampled from uniform distribution between 0 and 1.
Another underlying function is we proposed ”POWERadd”:
yi =

∑5
j=1 xij +

∑10
j=6 xij + εi, this function in order to test

the model’s DoF behavior under high-order curvature and extra
dimension. Data and error terms are sampled as ”MARSadd”.

The experimental results are demonstrated in Fig. 4. We
can observe that except for extreme cases (like r = 0.9 or
depth = 1), NDF-SR shows significantly higher DoF than the
linear model. Additionally, by controlling depth and pruning
rate (r), we can achieve a very flexible change in DoF in both
experiments. This is further evidence of the effectiveness of
pruning. From the results of simple simulated functions, we

can easily extrapolate that the linear model suffers from a low-
capability problem, while the NDF-SR (or DoF) we proposed
can provide a higher and more controllable capability.

D. Summary

In summary, framework SR-PredAO, when applied to exist-
ing state-of-the-art models, could have up to 2.9% improve-
ment on HR@20 and 2.3% of improvement on MRR@20. We
can observe this improvement in almost all base models on
all datasets. By considering the consistency of improvement
and the ease of applicability of our framework, we regard our
contribution as a major improvement to the field of the session-
based recommendation system.

VI. CONCLUSION

In this paper, we are the first to discover the important low-
capability issue in the predictor module of most (if not all)
existing models, lowering down their prediction accuracy. To
address this important issue, we propose a framework called
SR-PredictAO which could be applied to any existing models
following the common encoder-predictor paradigm. Extensive
experimental results on two public benchmark datasets show
that when framework SR-PredictAO is applied to 3 existing
state-of-the-art models, their performance are consistently im-
proved up to 2.9% on HR@20 and up to 2.1% on MRR@20.
Due to the consistent improvement on all datasets, we regard
our contribution as a major improvement to the field of the
session-based recommendation system.

VII. FUTURE WORK

Although SR-PredAO sets an effective and general enhance-
ment that can be applied for all models that lack capability
in modeling complex underlying behaviors. There are many
future possible studies that can be developed based on SR-
PredAO. Firstly, the cost of this framework is relatively
high when the number of leaf nodes is large. Thus, how to
develop an efficient tree-based method is a potential direction.
Secondly, this paper only discusses the task in session-based
recommendation, and the tree-based enhancement can be ap-
plied to a wider field such as language and vision modeling.
Thirdly, the theoretical foundation for neural-based trees also
needs to be built up by future studies.
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APPENDIX

A. Proof of Alleviator

1) Assumption 1: All session data are i.i.d. (i.e., indepen-
dent and identically distributed) samples affected by random
user’s behavior under some uniform distribution Ps.

i.e. For a set of collected sampled sessions: {si}mi=1, where
si = [si,1, si,2, · · · , si,li ] as we defined in Section III-A. For
all i, we have: si − ϵi ∼ Ps where ϵi is the random user’s
behavior, which can be intuitively understood as the user’s
random behavior

2) Assumption 2 (Empirical Bayes Assumption I): The
encoded value of a session (i.e., zij in Section IV-A1) is not
the real value, just an observation affected by random user’s
behavior:

i.e., for a not affected session si−ϵi; the real encoded latent
variable is µi = [µi1, · · · , µin′ ]T ; For a fixed j = 1, 2, · · · , n′

(where n′ is the dim for latent variable), the {µij}mi=1 and
follows distribution P(j)

s .
That means the real value for j− th propriety of the i− th

session should be µij ; But due to the effect of random user’s
behavior, the encoded result we observe from the session-
encoder is zij

3) Assumption 3 (Empirical Bayes Assumption II): The ob-
served value of the encoded session zij follows the distribution
of N (µij , σ

2
j ) and σj ⩾ 1 (if this assumption is not met, we

can always do batch normalization to make the σj not far from
1).

The Normal distribution assumption comes from the statistic
common that if a distribution is affected by extremely complex
factors, like the random user’s behavior. The safest way is to
assume that they are normally distributed. Since all numbers
in {zij}mi=1 represent the same factor of the session (the j−th
encoded factor), it is reasonable to assume they have the same
and relatively large variance.

4) Target: In high-level understanding, what we observed
in the real data is not the full fact but noisy data that have
information of the underlying true value. Our goal is to
obtain the underlying true value (i.e., µij in our case) through
observed values (the zij in our case).

The rigorous definition of the target is: given a batched,
observed encoded result: Z ∈ Rm×n′

and its corresponding
underlying true value µ ∈ Rm×n′

For a fixed j ∈ [1, n′], get an estimator µ̂ij |ξj for µij s.t.
E[
∑m

i=1(µ̂ij − µij)
2] is small.

Consider the Max likelihood estimator µ̂
(MLE)
ij = zij , and

µ̂ij
(JS) = (1− m−2

∥ξj∥2 )zij .

Claim that: E[
∑m

i=1(µij − µ̂
(JS)
ij )2] ⩽ E[

∑m
i=1(µij −

µ̂
(MLE)
ij )2]
5) Proof of claim: E[

∑m
i=1(µij − µ̂ij)

2] =
∑m

i=1 E[(zij −
µ̂ij)

2−(zij−µij)
2+2(µ̂ij−µij)(zij−µij)] =

∑m
i=1 E[(zij−

µ̂ij)
2]−m · σj + 2

∑m
i=1 E[(µ̂ij − µij)(zij − µij)]

Consider distribution function for zij as: φ(zij |µij , σj) =
1√

2π·σj
exp(− (zij−µij)

2

2σ2
j

). Therefore, (zij −µij)(µ̂ij −µij) =

−σ2
j

∂
∂zij

φ(zij |µij , σj)

Therefore, for any continuous, differentiable, and |f(z)| <
∞, function f : R → R. For simplicity, denote φ(zij |µij , σj)
as φ(zij) we have:

E[(zij − µij)f(zij)]

=

∫ +∞

−∞
(zij − µij)f(zij)φ(zij)dzij

=(−σ2
j ) · (

∫ +∞

−∞
(

∂

∂zij
φ(zij))f(zij)dzij)

=(−σ2
j ) · φ(zij) · f(zij)|+∞

−∞ −
∫ +∞

−∞
f ′(zij)φ(zij)dzij

=σ2
j · (

∫ +∞

−∞
f ′(zij)φ(zij)dzij)

=σ2
jE[

∂

∂zij
f(zij)]

Therefore, we have: E[(zij−µij)(µ̂ij−µij)] = E[∂µ̂ij

∂zij
]·σ2

j .

Therefore, when µ̂ij is MLE: E[
∑m

i=1(µij − µ̂
(MLE)
ij )2] =

0−m · σ2
j + 2m · σ2

j = m · σ2
j When µ̂ij is µ̂

(JS)
ij . We have:

E[∂µ̂
(JS)
ij

∂zij
] = 1− m−2

∥ξj∥2 +
2(m−2)z2

ij

∥ξj∥4

Therefore,
∑m

i=1 E[(µ̂
(JS)
ij − µij)(zij − µij)] = m −

E[ (m−2)2

∥ξj∥2 ]

With E[(zij − µ̂
(JS)
ij )2] = E[ (m−2)2

∥ξj∥2 z2ij ], we have:

E[
∑m

i=1(µij − µ̂
(JS)
ij )2] = m · σ2

j +m(1− 2σ2
j )E[

(m−2)2

∥ξj∥2 ]

Since in our assumption σ2
j ⩾ 1, we have:

E[
m∑
i=1

(µij − µ̂
(JS)
ij )2] ⩽ E[

m∑
i=1

(µij − µ̂
(MLE)
ij )2] (21)
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